

GARISSA UNIVERSITY

UNIVERSITY EXAMINATION 2017/2018 ACADEMIC YEAR <u>ONE</u> <u>SECOND</u> SEMESTER EXAMINATION

SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES

FOR THE DEGREE OF BACHELOR OF EDUCATION

COURSE CODE: CHE 103e

COURSE TITLE: INTRODUCTION TO KINETICS AND THERMODYNAMICS

EXAMINATION DURATION: 3 HOURS

DATE: 18/04/18

TIME: 2.00-5.00 PM

INSTRUCTION TO CANDIDATES

- The examination has SIX (6) questions
- Question ONE (1) is COMPULSORY
- Choose any other THREE (3) questions from the remaining FIVE (5) questions
- Use sketch diagrams to illustrate your answer whenever necessary
- Do not carry mobile phones or any other written materials in examination room
- Do not write on this paper

This paper consists of FOUR (4) printed pages

please turn over

1

QUESTION ONE (COMPULSORY)

(a) Define the following terms as applied to chemical kinetics [5 marks]

- i. Rate laws
- ii. Rate constant
- iii. Half life
- iv. Activation energy
- v. Molecularity of a reaction

(b) Iodide Ion is oxidized in acidic solution to trilodide ion 1^{3-} , by hydrogen peroxide

 $H_2O_{2(aq)} + 31^{-}_{(aq)} + 2H^+ag1^{3-}_{(aq)} \longrightarrow + 2H_2O_{(1)}$

A set of four experiment were run at different concentrations and the initial rates of 1^{3-} formation were determined

	Initial C	Initial Concentration (mo1/c		
Exp No	H_2O_2	Ľ	H+	$\operatorname{Moles}_{1} 1^{-1} \mathrm{s}^{-1}$
1	0.010	0.010	0.00050	$1.15 \text{ x} 10^6$
2	0.020	0.010	0.00050	2.30 x10 ⁻⁶
3	0.010	0.020	0.00050	2.30 x 10 ⁻⁶
4	0.010	0.010	0.00100	1.15 x10 ⁻⁶

i. From these data, obtain the reaction orders with respect to H₂O₂, 1⁻ and H⁺ and comment on your answer
ii. Calculate the rate constant
iii. Write the expression for rate law

(c) State four factors which the "rate constant" of a chemical reaction depends on [4 marks]

QUESTIONS TWO

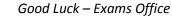
(a) State the Arrhenius equation and define all the terms [5 marks]

(b) If a first order reaction has an activation energy of 104500Jmo1⁻¹ and the pre-exponential factor A in the Arrhenius equation has a value of 5.0×10^{13} s⁻¹ at what temperature will be reaction have a half life of (i) I minute (ii) 30 days [10 marks]

- (a) Define zero order reaction, and give one example
- (b) The decomposition of NOBrto NO and Br_2 , g, is a second order, with rate constant of $0.810M^{-1}s^{-1}$ at $10^{\circ}c$
 - i. If the initial concentration is 7.5 x 10⁻³M, what is the concentration after a reaction time of 10 minutes? [4 marks]
 - ii. Determine the half life of this reaction [2 marks]
- (c) Compare by derivation the integrated and the half life equations for a first order and second

Order reaction, for which reaction is the half-life independent of the reactant concentration

[7 marks]


[2 marks]

QUESTIONS FOUR

(a) Define	the following terms in Thermodynamics	[5 marks]
i.	Path function	
ii.	Isobaric process	
iii.	Internal energy	
iv.	Exact differential	
v.	Adiabatic process	
(b) State th	e first law of Thermodynamics	[2 marks]
(c) One mo	ole of an ideal gas at 300k is allowed to expand Isothermally aga	inst a constant external
pressure	e of 1atm from a volume of 1.0 litres to a volume of 5.0 litres.	
Calcula	te the work done by the gas	[4 marks]
(d) Starting	g from a weightless, frictionless piston, show that the work done in	n expansion of a Gas is
given h	$\mathbf{W} \mathbf{W} = -\mathbf{P} \Delta \mathbf{V}$	[4 marks]

QUESTIONS FIVE

- (a) Name and define the three Thermodynamics systems [3 marks]
 (b) Name any three characteristics of an exact differential [3 marks]
 Calculate the work done when 50g of iron reacts with dilute hydrochloric acid in an open beaker at 25°c [3 marks]
 - i. $(R=8.314 \text{ JK}^{-1}\text{mol}^{-1} \text{ Fe} = 55.85 \text{ gmol}^{-1})$
- (c) Given that H = E + PV Derive the expression $C_p-C_v = R$ Apply the ideal gas equation for one mole of gas [6 marks]

QUESTIONS SIX

- (a) State Hess¹ Law
- (b) From the following equation and Enthalpy changes

Reaction equation ΔH^0 reaction kJ C (graphite) + $O_{2 (g)}$ $C O_{2(g)}$ -393.5 H_{2(g)} + \frac{1}{2} O_{2(g)} $H_2O_{(1)}$ - 285.8 2_{C2}H_{2 (g)} + 5O_{2(g)} $4CO_{2(g)} + 2H_2O_{(1)}$ - 2598.9

Calculate the standard enthalpy of formation of acetylene (C₂H₂) from its elements

$$2C_{(graphite)} + H_{2(g)} \in \mathbb{E}_2$$
 $H_{2(g)}$ [6 marks]

(c) A 0.242g of sample is burned in a bomb calorimeter containing 1025g of water. The molecular mass of the sample is given as 128gmol. Calculate the rise in temperature given that: [7 marks] Heat capacity of the calorimeter = 802J/⁰C

Heat of combustion of the sample = -5.15×103 KJ/mol

Specific heat of water = $4.184 \text{J/g}^{\circ}\text{C}$

[2 marks]