dc.contributor.author |
Sitati, N. I |
|
dc.contributor.author |
Kinyanjui, J.N |
|
dc.contributor.author |
Musundi, S.W |
|
dc.contributor.author |
Rimberia, J. |
|
dc.contributor.author |
Makila, P. |
|
dc.date.accessioned |
2017-03-11T08:02:44Z |
|
dc.date.available |
2017-03-11T08:02:44Z |
|
dc.date.issued |
2013-09 |
|
dc.identifier.citation |
Sitati N. I., Kinyanjui J. N., Musundi S. W., Rimberia J., Makila P.," Transitivity Action of 𝑨𝒏(𝒏=𝟓,𝟔,𝟕,𝟖) on Unordered and Ordered Pairs" in International Journal of Mathematical Archive-4(9),77-88,2013. |
en_US |
dc.identifier.issn |
2229 β 5046 |
|
dc.identifier.uri |
http://localhost:8080/xmlui/handle/1/136 |
|
dc.description |
This Article Contains References. |
en_US |
dc.description.abstract |
In this paper, we study some transitivity action properties of the alternating group 𝐴𝑛(𝑛=5,6,7 ,8) acting on unordered and ordered pairs from the set 𝑋𝑋 = {1,2,β¦,𝑛𝑛} through determination of the number of disjoint equivalence classes called orbits. When 𝑛𝑛β€ 8, the alternating group acts transitively on both X (2) and X[2]. Mathematics Subject Classification: 20BO5, 06A75, 06F15. |
en_US |
dc.language.iso |
en |
en_US |
dc.subject |
Orbits, alternating group 𝐴𝐴𝑛𝑛, ordered and unordered pairs from the set 𝑋𝑋. |
en_US |
dc.title |
Transitivity Action of 𝑨𝒏(𝒏=𝟓,𝟔,𝟕,𝟖) on Unordered and Ordered Pairs. |
en_US |
dc.type |
Article |
en_US |